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Abstract— Root water content (RWC) is a vital component
in water flux in soil–plant–atmosphere continuum. Knowledge
of RWC helps to better understand the root function and
the soil–root interaction and improves water cycle model-
ing. However, due to the lack of appropriate methods, field
monitoring of RWC is seriously constrained. In this study,
we used ground-penetrating radar (GPR), a common geophysical
technique, to characterize RWC of coarse roots noninvasively.
An automatic GPR data processing framework was proposed to
(1) identify hyperbolic root reflections and locate roots in GPR
images and (2) extract waveform parameters from the reflected
wave of identified roots. These waveform parameters were then
used to establish an empirical model and a semiempirical model
to determine RWC. We validated the developed models using
GPR root data at three antenna center frequencies (500 MHz,
900 MHz, and 2 GHz) that were produced from simulation
experiments (with RWC ranging from 70% to 150%) and
field experiments in sandy soils (with RWC ranging from 66%
to 144%). Our results show that both the empirical and the
semiempirical models achieved a good performance in estimating
RWC with similar accuracy, i.e., the prediction error [root-
mean-square error (RMSE)] was less than 8% for the simulation
data and 12% for the field data. For both models, the accuracy
of RWC estimation was the highest when applied to 2-GHz data.
This study renders a new opportunity to determine RWC under
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field conditions that enhances the application of GPR for root
study and the understanding and modeling of ecohydrology in
the rhizosphere.

Index Terms— Geophysics, ground-penetrating radar (GPR),
model fitting, noninvasive, root ecology, waveform parameters.

I. INTRODUCTION

AS A direct linkage between above- and belowground
worlds, roots are crucial to both plant individuals and

terrestrial ecosystems. Roots serve a variety of functions,
including the absorption and storage of nutrients, water trans-
port and uptake, and other biogeochemical processes in the
ecosystem carbon budget [1]–[3]. Knowledge of root water
content (RWC) is key to a comprehensive understanding of
root functions and ecohydrological modeling of water move-
ment between above- and belowground ecosystems [4], [5].
Moreover, RWC is a critical indicator of root physiological
activity that influences gradients in water potential and drives
water flux through the soil–plant–atmosphere continuum [6].
For example, the change in RWC can significantly affect
root tensile strength, the transport of water, and nutrients
toward root xylem vessels, and microbial respiration during the
decomposition of plant litter [7]–[10]. Additionally, a recent
study has used RWC as a wet-to-dry-mass conversion factor
to yield global underground wet mass [11].

Despite the importance of roots, traditional methods for
in situ root investigation are, however, destructive and labor-
intensive, e.g., excavation and soil coring, limiting the repeata-
bility of field sampling over a large area [12]. For example,
root samples need to be excavated from the soil and taken
back to the lab for oven drying to measure RWC [13].
This estimation procedure does not allow for the dynamic
monitoring of RWC in natural settings. Therefore, practical
measurements of RWC in the field, especially noninvasively
and repeatedly, are seriously constrained so far.

Ground-penetrating radar (GPR) is a common noninvasive
geophysical technique with the advantage of simple oper-
ation, high mobility, and rapid data collection over large
areas [14]–[16]. Since its first application in root study in
the 1990s, GPR has been successfully used to characterize a
variety of root parameters, mainly for coarse roots (diameter >
5 mm), such as root location, root distribution, and root system
architectures as well as root diameter and biomass [17]–[20].
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A standard GPR system is equipped with a pair of trans-
mitter and receiver antennas placed at the ground surface
for mapping subsurface objects [21]. The transmitter gen-
erates short pulses of high-frequency electromagnetic waves
at a specific frequency (typically ranging from 250 MHz
to 2.6 GHz) into the subsurface. The receiver collects the
reflected wave from detected objects, e.g., roots, as a function
of time. The reflected wave generation mainly depends on
the contrast in the dielectric permittivity between the object
root and surrounding soil [22]. The waveform parameters of
the reflected wave are closely associated with root properties,
e.g., root depth, root diameter, and RWC [19]. Previous studies
have correlated various waveform parameters to root diameter
and root biomass (see [21], [23]–[25]). For example, Barton
and Montagu [22] estimated root diameter by using the time
interval between two zero-crossings of the reflected wave (i.e.,
a time-related waveform parameter). Dannoura et al. [26] and
Hirano et al. [13] examined the empirical linear relationship
between coarse root biomass and the amplitude of the max-
imum reflected wave (i.e., a strength-related waveform para-
meter). After compensating radar energy attenuation with the
penetrating depth, Cui et al. [27] used the high amplitude area
of the reflected wave (i.e., a combination of strength- and
time-related waveform parameters) to estimate root biomass
of coarse roots at different depths.

Later, Guo et al. [28] demonstrated a considerable impact
of RWC on root biomass estimation by GPR, especially when
using the strength-related waveform parameters. According
to the dielectric mixing theory, a root can be considered a
complex of air, wood cellular material, and water [29]. Given
that the permittivity of water (∼81) is much larger than that
of air (∼1) and wood cellular materials (∼4.5), RWC is likely
the dominant factor controlling the dielectric permittivity of
a root and, thus, the permittivity contrast between a root
and the surrounding soil [30], [31]. The higher the RWC,
the stronger the reflected wave is produced by a root under
the same soil condition and root depth [28]. However, despite
the nominal strong correlation between RWC and the strength
of the GPR reflected wave of a root [13], [28], no study
has tested the utility of GPR for quantifying RWC. This
can be partly attributed to the complexity in establishing the
numerical relationship between RWC and the strength-related
waveform parameters since additional root parameters can also
influence the strength of the reflected wave of a root [19], [32].

To link waveform parameters to a specific root parameter
(e.g., root diameter and root biomass), previous studies have
developed several forms of empirical regression models at
different sites around the world [22], [23], [27], [33]. These
empirical regression models are often established in a linear
form based on the assumption that the waveform parameter
used in models is controlled by a single root parameter to
be estimated [28]. The inadequate consideration of the effects
from multiple root parameters in the estimation models can
lead to high uncertainty in model accuracy across study sites
and even unsuccessful applications [19]. Further, uncertainty
associated with waveform parameters also impacts model
accuracy. For instance, extracting waveform parameters often
depends on manual interpretation of root reflections in GPR

images, which highly relies on the operator’s experience [32].
Therefore, establishing an automatic data processing frame-
work can reduce bias and promote the efficiency of root
quantification with GPR in large-area investigations.

Recently, an increasing number of studies have related GPR
waveform parameters to the water content of aboveground
woody organs of plants, such as wood logs and tree trunks
(see [34]–[37]). These studies demonstrated the validity of
the GPR technique for water content determination in woody
biomass, although such GPR measurements were conducted
aboveground and not affected by soils. Therefore, we hypoth-
esize that the GPR method can render an effective way to
quantify RWC under field conditions, with the further advance-
ment in the methodology of applying GPR to investigate roots
(e.g., with an automatic data processing technique that extracts
waveform parameters from root reflections, and numerical
models that fully account for the influence of different root
properties on waveform parameters).

The objective of this study is to quantify RWC noninva-
sively using GPR. Our specific goals are as follows:

1) to propose an automatic processing framework for
extracting waveform parameters from the GPR reflected
wave of a root.

2) to establish GPR-based RWC estimation models (here-
inafter referred to as GPR-based RWC models) that link
waveform parameters to RWC.

3) to compare different GPR-based RWC models in quan-
tifying RWC.

To the best of our knowledge, this is the first study to
evaluate the use of GPR for determining RWC. The rest of
this article is organized as follows. Section II introduces the
field and simulation experiments for GPR data collection.
Section III describes the automatic processing framework and
the establishment of GPR-based RWC models. Sections IV
and V present the evaluation methods and the results for the
GPR-based RWC models, respectively. Section VI discusses
the limitation and outlooks of the proposed method, and
Section VII provides concluding points.

II. FIELD AND SIMULATION EXPERIMENTS

A. Experimental Site

The field-controlled experiment was conducted in the
southern part of Hunshandak Sandy Land (42◦26′ N and
116◦11′ E), Inner Mongolia, China (Fig. 1). This area has a
temperate semiarid climate, with an annual mean temperature
of 1.6 ◦C and annual precipitation of 386 mm [38]. The
landscape of the study area features fixed sand dunes
(Fig. 1). The vegetation cover is dominated by shrub colonies
such as Caragana microphylla, Ulmus pumila, Artemisia
ordosica, Stipa glareosa, and Poa annua [39]. The local
soil is dry sandy soil with 95% sand, 2% silt, and 3%
clay, and the average soil water content (SWC) is around
0.105 m3 · m−3 [27]. The soil is relatively homogeneous
without obvious soil horizonation and macropore structures,
which may interfere with the detection of roots in GPR images,
and hence favors the application of GPR to measure roots.
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Fig. 1. (Left) Location of the experimental site. The base map depicts the distribution of desert in China, which is distributed by the Environmental &
Ecological Science Data Center for West China, Lanzhou, Gansu, China (http://westdc.westgis.ac.cn). (Right) Photograph of Caragana microphylla colonies
distributing on sand dunes in the study area.

B. Root Samples

Root systems of five shrub individuals (Caragana micro-
phylla) were excavated at the study site (Fig. 1). A total
of 20 coarse root samples, which were relatively straight with
minimal tapering and cut to the same length of 0.7 m, were
retained for GPR measurement. Fresh weights and diameters
of root samples were measured immediately after excavation
(Table I). The prepared root samples were grouped into five
levels with an approximate diameter of 10, 15, 20, 25, and
35 mm, respectively (Table I).

Molten wax was used to seal the cut ends of root samples to
limit water loss from roots during the field experiments. These
root samples were then buried in the soil as reflectors for GPR
data collection. After field experiments, all root samples were
taken to the laboratory and oven-dried at 65 ◦C until constant
root weights were reached to measure the dry weights and,
further, the gravimetric RWC of root samples (i.e., the ratio of
root water mass to root dry weight). The selected root samples
created a gravimetric RWC gradient from 80.28% to 144.01%
(Table I). It is noted that the RWC indicated in this article is
gravimetric RWC.

C. Root GPR Data Collection in the Field

Five soil trenches (each with 4.2 m length, 1.2 m width,
and 1.0 m depth) were dug at a relatively flat area at the study
site. Perpendicular to each soil trench wall, four holes with a
horizontal interval of 1.0 m were drilled at a depth of 0.2, 0.3,
0.4, and 0.6 m, respectively, to bury root samples [Fig. 2(a)].
The inlet length of each hole was 0.8 m so that root samples
could be fully inserted into the soil. Root samples from the
same diameter group (e.g., root sample No. 1, 6, 11, and 16,
representing roots with a diameter of 10 mm) were inserted
into the same soil trench at four depths [Fig. 2(a)]. Then the
soil trench was refilled, and the surface was flattened before

GPR measurements. This experimental setup ensured a mini-
mal disturbance to the original soil above root samples [27].

A field-portable GPR system, Zond–12e (Georadar Systems
Inc., Riga, Latvia), equipped with three shielded antenna pairs
at the center frequency of 500 MHz, 900 MHz, and 2 GHz
(i.e., the common GPR frequencies for root investigation) was
employed to scan the roots. First, three GPR survey lines with
a spacing of 10 cm were laid out perpendicular to the long
axis of the root samples [Fig. 2(b)]. Then the GPR system was
dragged over the buried root samples along the predesigned
survey lines [Fig. 2(b)]. Then we changed the antenna pairs
to repeat GPR data collection until root samples were scanned
at all three antenna center frequencies.

D. Forward Simulation

To complement field experiments with limited root samples,
a set of simulations was performed to generate GPR root
reflection data under various levels of RWC, root diame-
ters, and GPR antenna center frequencies. All simulations
were completed with the GprMax V2.0, an open-source soft-
ware [40] that has been used in GPR root signal simulation in
various studies [41]–[43].

The GprMax simulator generates GPR images with root
reflections based on input information of antenna center fre-
quency, the electromagnetic attributes of the soil and object
roots, and the relative position of roots and the surrounding
soil [29], [42]. In our simulations, soil texture was set to sand
with a dielectric permittivity of 5.53, calculated according
to Topp’s equation using SWC at 0.105 m3 · m−3 [44]. The
root depth was set to 0.3 m and the geometric domain of
the soil was set to 1.2 m wide and 0.8 m deep (Fig. 3).
Each simulated GPR image was composed of 54 A-scans
(i.e., radar traces), and the time window of each A-scan was
set to 20 ns. Considering both numerical stability and model
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TABLE I

ROOT PARAMETERS AND GPR ROOT DETECTION RESULTS FOR ROOT SAMPLES SELECTED IN THE FIELD EXPERIMENT. THE CIRCLE MARKERS
REPRESENT THAT ROOT SAMPLES ARE DETECTED BY GPR WHEREAS THE CROSS MAKERS REPRESENT THAT ROOT

SAMPLES ARE NOT DETECTED

Fig. 2. Schematic of the field experiment for collecting GPR root reflection data. (a) Side view of a soil trench and (b) top view of three GPR survey lines
on the ground surface.

reliability, the spatial discretization of the geometric domain
in simulations was set to 2.5 mm.

According to an extensive investigation of RWC of shrub
species in the study region [28], nine gravimetric RWC
levels (from 70% to 150% with an increment of 10%) were

included in the simulations, together with nine root diameter
levels (from 10 to 50 mm with an increment of 5 mm) to
represent common shrub root conditions at the study site.
To be consistent with the field experiments, three antenna
center frequencies (e.g., 500 MHz, 900 MHz, and 2 GHz) were
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Fig. 3. (a) Geometric domain for all simulations. (b) Example of a simulated GPR image with a root reflection, i.e., the hyperbolic reflection. Root diameter
was set to 20 mm, RWC 110%, antenna center frequency 900 MHz, and SWC 0.105 m3 · m−3.

selected for simulations. Therefore, a total of 243 GPR images
with root reflections (i.e., 9 RWC levels × 9 root diameter
levels × 3 antenna frequencies) were generated [Fig. 3(b)].

III. AUTOMATIC PROCESSING FRAMEWORK FOR

GPR-BASED RWC ESTIMATION

This section proposes an automatic GPR data processing
framework in combination with GPR-based RWC models to
determine RWC (Fig. 4):

1) preprocessing raw GPR images to enhance the signal-
to-noise ratio and the detection of hyperbolic reflections
of roots.

2) automatically identifying hyperbolic reflections to locate
roots in preprocessed GPR images and extract waveform
parameters of root reflections.

3) establishing GPR-based RWC models using extracted
waveform parameters in 2) to get a measure of RWC.

A. GPR Data Preprocessing

Raw GPR images require several preprocessing procedures
to extract waveform parameters accurately, including zero-time
correction, background removal, and amplitude compensa-
tion [19]. The zero-time correction shifts the radar signal to
start from the ground surface, ensuring accurate locating of
roots [45]. Background removal eliminates noises to facilitate
the identification of root reflections in GPR images [46].
Amplitude compensation calibrates energy attenuation of GPR
reflected wave with penetrating depth so that the strength of
root reflections is independent of depth [27]. Fig. 5 exhibits
examples of GPR images before and after preprocessing,
which depicts a clear hyperbolic reflection.

B. Automatic Extraction of Waveform Parameters

The proposed method achieves the automatic extraction
of waveform parameters of a root reflection via three steps
(Fig. 5).

1) An image edge extraction operator, the Sobel filter,
was performed on the preprocessed GPR image [32].
Then, the gray-scale GPR image was converted into
a binary image [Fig. 5(c)]. Each connected edge in
the binary GPR image was considered the region of
interest (ROI) of a hyperbola. Generating an ROI helps
reduce the computational time in identifying hyperbolic
root reflections in the following step.

2) The randomized Hough transform method, a widely used
technique of identifying hyperbolic shapes [47], [48],
was applied to each ROI [Fig. 5(c)]. Based on hyper-
bola parameter determination, the randomized Hough
transform method identified an optimal hyperbola as
a root reflection automatically [Fig. 5(d)]. The apex
of the identified hyperbola was considered the root
location [49], [50]. Details of using the randomized
Hough transform method to identify root reflections can
be found in Li et al. [32] and Liu et al. [41].

3) The A-scan passing through the root location on the
identified root reflection was selected for extracting
waveform parameters of the reflected wave of the
detected root [Fig. 5(e)], including Amax (i.e., the maxi-
mum amplitude) and �t (i.e., the time interval between
two zero-cross points of t1 and t2). Further, Amax and �t
were used to calculate Parea (i.e., maximum amplitude
area) of the reflected wave

Parea = 1

2
× Amax × �t . (1)

C. Two GPR-Based RWC Models

Root depth, root diameter, and RWC are the primary root
properties that control the signal strength of the reflected wave
of a root in GPR images [19]. Given that data preprocessing
conducted above has calibrated the impact of varying root
depths on GPR signal strength, we assumed that the compen-
sated signal strength positively correlates with root diameter
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Fig. 4. Proposed automatic processing flowchart for RWC determination from GPR images. ROI refers to the region of interest of a hyperbolic reflection
in GPR images.

Fig. 5. Procedure of automatic extraction of waveform parameters from a hyperbolic reflection of a root. (a) Raw GPR image was collected by a 900-MHz
antenna, showing a blurry hyperbolic reflection formed by a root (indicated in the yellow box). (b) Corresponding GPR image after preprocessing. (c) Binary
GPR image after edge extraction. Each connected edge (indicated by the solid curve) refers to the ROI. (d) Apex of the hyperbola (indicated by the yellow
dot) indicates the location of the detected root. (e) A-scan [indicated by the red dashed line in (d)] passing through the root was selected for extracting
waveform parameters of the reflected wave (indicated by the red curve), including time interval (�t), maximum amplitude (Amax), and maximum amplitude
area (Parea).

and RWC only (Fig. 6). Existing studies usually correlated
a root property (root diameter or root biomass) to root’s
GPR signal strength via linear regression models [13], [22],
[28]. However, as shown in Fig. 6, different root diameters
shift the linear relationship between RWC and the signal

strength. Therefore, we proposed two ways to characterize
the relationship between RWC and signal strength with the
consideration of root diameter.

One way is to develop multivariate regression
RWC = a1 × S + b1 × D + c1 × S × D + d1 (2)
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Fig. 6. Change in Parea along RWC gradient at different levels of root
diameter. The values of Parea were extracted from GPR images simulated at
900 MHz following the method detailed in Section II-D. Dashed lines depict
the linear relationship between RWC and Parea .

where S is the signal strength of GPR root reflections, D is
root diameter, and a1, b1, c1, and d1 are unknown parameters
that can be determined by fitting the models to a set of values
of S and D. Equation (2) is considered an empirical model
because RWC is directly linked to signal strength and root
diameter by a nonlinear regression model.

The other way accounts for GPR reflection principles

RWC = 1

a2 × D + b2
× S + c2 (3)

where a2, b2, and c2 are unknown parameters. In (3), 1/(a2 ×
D + b2) × S can be conceptualized as the signal strength
generated by per unit root diameter, which varies with different
values of RWC. Moreover, 1/(a2 × D + b2) represents the
slope of the linear relationship between RWC and root’s GPR
signal strength, i.e., the larger the root diameter, the smaller the
slope. This trend is consistent with the theoretical simulation
results (Fig. 6), indicating that the relative contribution to
root’s GPR signal strength by RWC decreases at greater root
diameter levels. As it is rooted in the physical principles of
GPR reflection generation, (3) is considered a semiempirical
model.

To solve the models, we used different sets of waveform
parameters to determine S and D, respectively. Since �t
has been proven closely related to D with a linear relation-
ship [22], [51] (refer to Fig. 10), we used �t as a surrogate of
D. Moreover, we used Parea as a surrogate of S because Parea is
a robust waveform parameter representing the signal strength
and strongly correlated with RWC [13], [24], [27], [28].

IV. MODEL EVALUATION

A. Data Preparation

The simulated data were divided into two groups, the train-
ing data and the testing data, both with the same range of
RWC from 70% to 150%. The training data were used to
fit model parameters and evaluate mode fitting at five root
diameter levels (i.e., 10, 20, 30, 40, and 50 mm). The testing

data were used to assess the models’ performance in estimating
RWC at the other four root diameter levels (i.e., 15, 25, 35,
and 45 mm). Thus, for each GPR frequency, the training data
consisted of 45 simulated GPR images while the testing data
consisted of 36 simulated GPR images. The purpose of using
a bigger portion of the data set for model training is to capture
a wider variation of the data and thus make the models more
robust for prediction.

For the field experiment, different antenna center fre-
quencies displayed varied abilities in detecting root samples
(Table I). The 500-MHz GPR antenna detected 16 root samples
but could not detect four root samples at the 10-mm-diameter
level due to the low detection resolution. The 2-GHz GPR
antennas detected 19 root samples but failed to detect the
root sample with the 10-mm root diameter at 0.6 m depth
due to the limited detection depth. In contrast, the 900-MHz
GPR antenna detected all 20 root samples, providing the best
combination of detection depth and resolution. To compare
models at different antenna center frequencies, we only used
GPR data collected from 16 root samples that were detected
at any selected frequency (Table I) to fit models and evaluate
model fitting. Then due to the limited number of root samples,
we carried out the leave-one-out cross validation (LOOCV)
on data collected from 16 root samples to assess model
performance in estimating RWC.

B. Model Fitting Assessment

To examine whether the established models are statistically
significant in representing the relationships between variables,
we evaluated the fit of the models to training data in three
aspects, (1) the F value (Fvalue) from an F test to reflect the
overall significance of the fit of the models, (2) the coefficient
of determination (R2) and the adjusted R2 (R2

adjusted) to eval-
uate the goodness of the fit of the model,; and (3) the square
root of the variance of the residuals (Sr) to characterize the
precision of the fit of the models [52]

Fvalue =
∑m

k=1

(
RWCestimated

k − RWC
fitting

)2

∑m
k=1

(
RWCfitting

k − RWCestimated
k

)2

× (m − p)

(p − 1)
(4)

R2 = 1 −
∑m

k=1

(
RWCfitting

k − RWCestimated
k

)2

∑m
k=1

(
RWCfitting

k − RWC
fitting

)2 (5)

R2
adjusted = 1 −

∑m
k=1

(
RWCfitting

k − RWCestimated
k

)2

∑m
k=1

(
RWCfitting

k − RWC
fitting

)2

× (m − 1)

(m − p)
(6)

and

Sr =
√∑m

k=1 (RWCfitting
k − RWCestimated

k )2

m − p
(7)

Authorized licensed use limited to: University of Vermont Libraries. Downloaded on March 30,2021 at 11:16:54 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

where RWCestimated
k is the model-estimated RWC value for the

kth root sample and RWCfitting
k is the RWC value of the kth

root sample that was used to fit the model. RWC
fitting

is the
mean value of the RWC of m root samples. m is the number
of root samples used for fitting the models, i.e., 45 for the
simulation training data and 16 for the field data, and p is the
number of model parameters, with 4 for the empirical model
[see (2)] and 3 for the semiempirical model [see (3)]. The F
values were calculated to compare with F critical values at the
0.01 significance level from the F distribution table. Given
that adding variables to the prediction models can increase
R2 values, the R2

adjusted was also calculated to compare model
fitting.

C. Assessing the Accuracy of RWC Estimation by Proposed
Models

Four statistical metrics were calculated to compare RWC
estimated by the proposed models to actual values, including
root-mean-square error (RMSE), correlation coefficient (r),
relative error (RE), and the mean absolute error (MAE), as
shown at the bottom of the page no. 10, and

MAE = 1

N
×

N∑
i=1

∣∣RWCestimated
i − RWCactual

i

∣∣ (11)

where RWCestimated
i and RWCactual

i are model-estimated and
actual RWCs for the i th root sample, respectively. RWC

estimated

and RWC
actual

are the average of model-estimated and actual
RWCs for all N root samples, respectively. N is the total
number of root samples for comparing model accuracy, with
36 for the simulation testing data and 16 for the field data.
RMSE and r were used to evaluate the prediction precision
and degree of agreement between model-estimated and actual
RWC, respectively. Given the complex influence of multiple
environmental factors on field data, RE and MAE were only
computed for the simulation data to analyze the influence of
RWC and root diameter on the proposed models’ accuracy.

V. RESULTS

A. Model Fitting

For the simulation training data, all models show a high
value of R2 (>0.85), regardless of different GPR frequencies
(Table II). Moreover, all models fit the training data well, and
the goodness of the fit of models is statistically significant,
with the Fvalue values larger than the corresponding F critical
values (i.e., fvalue in Table II) at the 0.01 significance level.
Further, the precision of these fit models ranges from 6.54%
to 8.87% (i.e., Sr in Table II). Thus, the proposed models are
effective at quantitatively describing the relationship between
RWC and waveform parameters.

Both models are also fit well to the field GPR data at
three antenna center frequencies, with R2 values larger than
0.68 and Fvalue values passing F test (Table II). Nevertheless,
the precision of the models fit to the field data is slightly lower
than that fit to the simulation data, ranging from 9.50% to
12.43% (Table II). When 2-GHz data are used, both models
achieve the highest R2

adjusted and Fvalue. Hence, the proposed

models are best fit to the GPR data at a higher antenna center
frequency (Table II).

B. RWC Estimations With Two GPR-Based RWC Models

Fig. 7 shows the application results of the proposed GPR-
based RWC models to the simulation testing data. All models
established for varied frequency data achieve a good perfor-
mance in estimating RWC, with the maximum RMSE of less
than 7.94% and the minimum r greater than 0.96 [Fig. 7(e)].
Both models established for the 2-GHz data produce the best
estimation accuracy of RWC, with an RMSE value of 6.16%
(or 6.34%) and an r value of 0.97 (or 0.97) for the empir-
ical model (or the semiempirical model) [Fig. 7(c) and (f)].
Moreover, the narrow ranges of RMSE and r values indicate
that the overall performance of proposed models is relatively
consistent in estimating RWC.

Results of using GPR-based RWC models established
for the field data to estimate RWC are shown in Fig. 8.
Regardless of GPR frequency, both models exhibit good and
stable performance in estimating RWC, with RMSE values
ranging from 8.57% to 11.21% and r values ranging from
0.75 to 0.85 (Fig. 8). The semiempirical model established
using the 2-GHz data achieves the lowest RMSE and the
highest r [Fig. 8(f)], whereas the models established using
data collected at lower antenna center frequencies result
in higher RMSE values and lower r values, i.e., a lower
accuracy in estimating RWC [Fig. 8(a) and (d)].

In all, the proposed empirical and semiempirical models
are capable of achieving a reasonable estimation of RWC
regardless of antenna center frequencies. In terms of RMSE
and r (Figs. 7 and 8), the empirical model slightly outperforms
the semiempirical model in estimating RWC in most cases.
Both models established using 2-GHz data achieve more
accurate estimations of RWC than using data obtained at a
lower frequency.

C. Impacts of RWC and Root Diameter on the Performance
of the GPR-Based RWC Models

Fig. 9 confirms that REs and MAEs vary at different
RWCs and root diameters. By comparing Fig. 9(a)–(c) to
Fig. 9(d)–(f), the change in MAEs with root diameter is
similar between the empirical and semiempirical models but
divergent among antenna center frequencies. This suggests that
the impacts of root diameter on RWC estimation are more
sensitive to antenna center frequency than to the model forms.
In contrast, according to the comparison between Fig. 9(a)−(d)
to Fig. 9(b)−(e), the impacts of RWC levels on RWC estima-
tions are more sensitive to the form of the models, especially
for RWC estimation using data at 500 and 900 MHz. For RWC
estimation using data at 2 GHz [Fig. 9(c) and (f)], the impacts
of both root diameter and RWC levels on the accuracy of RWC
estimation show no noticeable difference between model types.
Regardless of antenna center frequency, the semiempirical
model exhibits a higher accuracy of RWC estimation at lower
RWC levels from 70% to 100% [Fig. 9(a)–(c)] whereas the
empirical model displays a higher accuracy of RWC estimation
at higher RWC levels from 100% to 150% [Fig. 9(d)−(f)].
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TABLE II

F VALUE (Fvalue), COEFFICIENT OF DETERMINATION (R2), SQUARE ROOT OF THE VARIANCE OF THE RESIDUALS (Sr), AND PARAMETERS OF TWO

GPR-BASED RWC MODELS FIT TO THE SIMULATION AND FIELD GPR DATA AT THREE GPR FREQUENCIES. THE BOLD ITALICIZED NUMBERS

REFER TO THE NUMBER OF ROOT SAMPLES INVOLVED IN FITTING MODELS. THE fvalue REFERS TO THE F CRITICAL VALUE AT THE

0.01 SIGNIFICANCE LEVEL FROM THE F DISTRIBUTION TABLE

Compared with RWC estimations using 500- and 900-MHz
data, RWC estimations using two GPR data achieve a higher
accuracy regardless of model types [Fig. 9(c) and (f)].

VI. DISCUSSION

A. Applicability of the Proposed Framework

Results from both simulation and field data confirm the
applicability of the GPR method for estimating RWC at

different antenna center frequencies. However, due to the
difference in the detection resolution and detection range
(Table I), antenna center frequency significantly affects the
performance of GPR-based RWC models (Figs. 7 and 9).
Previous studies recognized the dependence of root detection
on antenna center frequency [13], [19]. The field experiment
in this study also showed that the 2-GHz GPR failed to detect
the root at 0.6 m depth, and the 500-MHz GPR was unable to
detect roots at the10-mm root diameter level (Table I). Given
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the tradeoff between the detection resolution and penetrating
depth, the 900-MHz GPR detected all roots and could achieve
a reasonable accuracy of RWC estimation (Tables III and IV
in the Appendix).

Different antenna center frequencies affect the identification
of root reflections and hence the extraction of waveform
parameters. For example, 2-GHz and 900-MHz data are more
accurate than 400-MHz data to identify root reflections [32].
Further, the higher the GPR frequency, the more accurate the
extraction of waveform parameters [27]. This also explains
why the proposed two models performed the best when 2-GHz
data were used (Figs. 7 and 8), especially at the root diameter
level of 15 mm (i.e., the minimal root diameter levels) in the
simulation experiment (Fig. 9).

Soil condition (e.g., soil water and clay content) also
influences root detection by GPR [49]. For example, soil
with high water content and/or high clay content seriously
degrade the GPR’s performance in measuring roots [25]. The
higher the antenna center frequency, the more serious the
degradation of GPR data quality in wet soil [12]. Recently,
Cui et al. [53] found that GPR surveys detected more roots
in winter than in summer, because SWC decreased from
summer to winter and created a more considerable contrast
in dielectric permittivity between roots and surrounding soils.
Therefore, the performance of the proposed framework likely
varies across study sites and periods.

B. Advantages of the Proposed Framework

Recent studies have noted the significance of automatic
GPR data processing in locating root distribution [32], [53],
mapping soil moisture in the root zone [54], and recon-
structing root system structure [12]. The automatic processing
framework proposed in this study further implements the
extraction of waveform parameters from GPR root reflections
and the quantification of RWC. Instead of the manual extrac-
tion of waveform parameters in previous studies (see [13],
[23], [25], [28]), the proposed framework improves the effi-
ciency of GPR data interpretation at larger areas and minimizes
artificial bias.

Although the application of automatic GPR data processing
and GPR-based root quantification have gained increasing
attention [24], [32], only a few efforts have been pursued
to combine the two aspects to measure roots automatically.
This study integrates automatic GPR data processing and
GPR-based RWC determination, which can be further refined
to measure other root properties such as root diameters and

root biomass. Due to the advantages of flexible mobilization
and rapid data collection, GPR has been used for extensive
root investigations over a large area [24], [54]–[56]. The
automatic processing framework provides timely support to
propel rapid interpretation of massive GPR root data sets,
especially with the rise of big data applications for GPR [57].
In genetic research, the rise of automated interpretation of mil-
lions of data points greatly accelerated the field of genomics.
Automated GPR analysis of multiple rhizosphere parameters
could lead to a new quantitative study of roots, rooting
zone, density, distribution, hydrology, and interaction with
the environment called “rhizonomics” and change how diffi-
cult root–environment hypotheses are tested. With the further
enhancement of automatic data processing, it is possible to
develop real-time GPR measurements of variable root proper-
ties in the future.

C. GPR-Based RWC Determination

Root biomass is a key indicator for studying plant response
to environmental change and soil carbon sequestration [58].
The impacts of RWC on root detection and root biomass quan-
tification by GPR have been previously noted [13], [26], [28].
This study extends the application of GPR to measure RWC.
It helps improve the accuracy of measuring root biomass by
GPR by providing information about RWC, which creates an
opportunity to calibrate the influence of RWC on root biomass
measurement.

Different from previous GPR-based models for root bio-
mass/diameter estimation, which mostly relied on a single
GPR index (see [22], [23], [28], [33]), the GPR-based RWC
models proposed here take into account the joint effects of
multiple root properties (RWC and root diameter) on root GPR
reflections. The good fitting and estimation accuracy of both
empirical and semiempirical models confirm their feasibility
in quantifying RWC (Table II, Figs. 7 and 8).

Compared with the empirical model, the semiempirical
model has fewer unknown variables and is more efficient
in the calculation [59]. Moreover, the semiempirical model
offers a physical interpretation for each involved variable,
which facilitates understanding of the underlying mechanism
that governs the response of root GPR reflections to root
properties. Although the overall accuracy of the semiempirical
model is slightly lower than the empirical model in most study
cases (Figs. 7 and 8), the consistent pattern of the model
bias, i.e., high accuracy at low RWC but low accuracy at
high RWC (Figs. 7 and 9) ensures a potential for further

RMSE =
√√√√ 1

N
×

N∑
i=1

(
RWCestimated

i − RWCactual
i

)2
(8)

r =
∑N

i=1

[(
RWCestimated

i − RWC
estimated

)
×

(
RWCactual

i − RWC
actual

)]
√∑N

i=1

(
RWCestimated

i − RWC
estimated

)2 ×
√∑N

i=1

(
RWCactual

i − RWC
actual

)2
(9)

REi = RWCestimated
i − RWCactual

i (10)
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Fig. 7. Comparison of the accuracy of RWC estimation by the (a)–(c) empirical and (d)–(f) semiempirical models for the simulation testing data at different
root diameters.

Fig. 8. Comparison of the accuracy of RWC estimation by the (a)–(c) empirical and (d)–(f) semiempirical models for the field data at different root diameters
and root depths.

improvements. As the first attempt to relating waveform para-
meters of root reflections to root parameters, the semiempirical
model proposed in this study paves the way for developing
more sophisticated physical models to measure other root
parameters.

D. Limitations of This Study and Outlook

1) Root samples collected in the study area were limited
to a relatively high RWC level, i.e., ranging from 70%

to 150%. However, natural living roots exhibit a wider
range of RWC [28]. A low RWC cannot create enough
contrast in dielectric permittivity with the surrounding
soil and leads to a low signal-to-noise ratio of root
reflections, which impedes root detection by GPR and
the extraction of GPR index [13].

2) The proposed framework was only tested in the homo-
geneous sandy soil. The setting of roots in the controlled
experiments cannot fully represent natural conditions of
root growth. In soils with higher heterogeneity, root
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Fig. 9. RE (indicated by blue-red colormap) and MAE (indicated by black solid curves) of RWC estimation by the (a)–(c) empirical model and the (d)–(f)
semiempirical model at different levels of RWC and root diameter. The vertical (or horizontal) dashed lines indicate the mean value of MAE at all RWC (or
root diameter) levels.

reflections of natural root systems are sometimes not
symmetric and complete hyperbolas [32], [41]. This
reduces the efficiency of the proposed framework to
identify root reflections and estimate RWC. Thus, more
field studies are required to test the proposed framework
across environments.

3) The proposed GPR-based RWC models are established
on the assumption of constant SWC. The signal strength
of GPR root reflections is determined by the contrast
in dielectric permittivity (or water content) between
the root and the surrounding soil [19], [22]. Thus,
the parameters of GPR-based RWC models reported
here (Table II) are site-specific and need to be calibrated
at new field conditions.

To enhance the transferability of the proposed models in
different environments, one possibility is to establish more
sophisticated physical models that consider the influence of
the variation in SWC. The contrast between RWC and SWC
can be related to the signal strength per unit root diameter,
1/(a × D + b) × S, through

f (RWC − SWC) = S

a × D + b
+ c (12)

where f (RWC − SWC) is a function of the contrast between
RWC and SWC, and c is an unknown parameter representing
residual error. Hence, with given values of SWC that are handy
to measure in the field, the proposed models can be used to

estimate RWC. Most recently, Liu et al. [41], [54] developed
a novel method of estimating SWC from GPR root reflections
without additional auxiliary data. Thus, through computing
SWC and optimizing the form of (12), RWC can be calculated
by

RWC = f −1

(
S

a × D + b

)
+ SWC + c. (13)

The joint estimation of SWC and RWC by GPR will be
examined in follow-up studies.

VII. CONCLUSION

In Situ quantification of root properties by GPR has gained
increasing attention in recent years. This study proposed
an automatic processing framework to identify root reflec-
tions in GPR images, extract waveform parameters from root
reflections, and estimate RWC. Two GPR-based models, one
empirical model and one semiempirical model that link RWC
to root diameter and the strength of root reflection, were
established and validated using GPR data from field-controlled
experiments and simulation experiments. Results indicated
both models’ successful performance in determining RWC at
three antenna center frequencies (500 MHz, 900 MHz, and
2 GHz). Regardless of antenna center frequency, the RMSE
of RWC estimations for both models was less than 8% for
the simulation data and 12% for the field data. Both models
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Fig. 10. Strong linear relationship between root diameter (D) and time interval (�t) extracted from 900-MHz GPR (a) simulation data and (b) field data.

TABLE III

PERFORMANCE OF THE EMPIRICAL MODEL IN MODEL FITTING AND MODEL ESTIMATION FOR GPR DATA COLLECTED WITH DIFFERENT NUMBERS OF
ROOT SAMPLES. THE BOLD ITALICIZED NUMBERS REFER TO THE NUMBER OF SAMPLES INVOLVED IN FITTING MODELS

TABLE IV

PERFORMANCE OF THE SEMIEMPIRICAL MODEL IN MODEL FITTING AND MODEL ESTIMATION FOR GPR DATA COLLECTED WITH DIFFERENT NUMBERS

OF ROOT SAMPLES. THE BOLD ITALICIZED NUMBERS REFER TO THE NUMBER OF SAMPLES INVOLVED IN FITTING MODELS

achieved the best accuracy in RWC estimation when applied
to the 2-GHz data. The proposed framework shows great
potential for in situ determination of RWC automatically
and repeatedly, enhancing GPR’s application in ecohydrology.
We advocate further field studies under real-world conditions
to further test and refine this framework to measure various
root parameters by GPR.

APPENDIX

(See Figure 10 and Tables III–IV.)
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